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We study the long-time aging dynamics of spin-glass models with two-spin interactions by performing a
renormalization group �RG� transformation on the time variable in the nonequilibrium dynamical generating
functional. We obtain the RG equations and find that the flow converges to an exact fixed point. We show that
this fixed point is invariant under reparametrizations of the time variable. This continuous symmetry is broken,
as evidenced by the fact that the observed correlations and responses are not invariant under it. We argue that
this gives rise to the presence of Goldstone modes, and that those Goldstone modes shape the behavior of
fluctuations in the nonequilibrium dynamics.
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I. INTRODUCTION

Glassy materials are characterized by very slow dynam-
ics, associated with a dramatic slowdown of molecular relax-
ation in structural glasses, and with a dramatic slowdown of
spin relaxation in spin glasses. This slowdown of the dynam-
ics has been captured in great part by the results obtained by
dynamical mean-field theories. In the case of supercooled
liquids, the mean-field mode-coupling approach1 has been
successful in describing some of the features of the relax-
ation. In the case of spin glasses, a dynamical mean-field
theory based on Langevin dynamics for the spins, examined
within a functional integral formulation of the Martin-Siggia-
Rose approach,2–5 has been used to study the long-time re-
laxation. The dynamical mean-field theory of spin glasses
has successfully captured3–5 some unusual properties of the
spin dynamics, associated with the lack of equilibration, in-
cluding the presence of physical aging and the breakdown of
the equilibrium fluctuation-dissipation relations.

However, mean-field theories do not allow direct access
to a description of the fluctuations in the dynamics. It turns
out that fluctuations in the dynamics of glassy systems can
in fact be rather strong, as it has been underlined by the
discovery of dynamical heterogeneities.6,7 Dynamical hetero-
geneities are nanometer-scale regions of molecules rearrang-
ing cooperatively at very different rates compared to the
bulk. Recent studies of material systems near their glass
transitions have uncovered substantial experimental8–17 and
simulational18–22 evidence for their presence. Various at-
tempts at theoretically addressing these strong fluctuations
have been made, involving, among others, the ideas of dy-
namic facilitation,23–27 the presence of a “random first-order
phase transition,”28–30 or the use of diagrammatic methods to
carefully reanalyze and extend mode-coupling theory.31,32

However, a detailed theory that explains the dynamical het-
erogeneities remains elusive.33

Recently, a theoretical framework for the study of fluctua-
tions in the nonequilibrium dynamics of glassy systems has
been proposed,34–37 which is based on the presence of a
Goldstone mode associated with a symmetry under continu-
ous reparametrizations of the time variable. It was argued
there that the presence of this symmetry could provide an
explanation for many of the dynamical heterogeneity effects

observed in various glassy systems. In Ref. 34, a sketch of a
proof for the presence of this symmetry was presented. Ear-
lier work had uncovered the presence of a restricted version
of this symmetry for the mean-field dynamical equations of
some infinite-range spin-glass models.3–5,38

In the present work, we present a detailed proof of the
presence of this symmetry under continuous reparametriza-
tions of the time variable, for the long-time dynamics of a
generic spin-glass model with two-spin interactions. The
proof is based on using the renormalization group �RG� to
extract the long-time behavior of the theory. It is somewhat
unusual in the sense that we coarse grain time differences and
not positions. In other words, the degrees of freedom that are
“integrated over” are the ones associated with the “fast” dy-
namics, where by “fast” we mean fast in time, and not nec-
essarily in space.

Although involved in some of its details, our procedure is
conceptually simple. We consider a model for a set of soft
spins on a lattice, which contains only two-spin interactions,
with a zero-mean uncorrelated Gaussian distribution for the
spin couplings. We assume a Langevin-type dynamics for the
spins with a noise term whose amplitude is controlled by the
temperature of the environment. We use the functional inte-
gral formulation of the Martin-Siggia-Rose approach to de-
scribe the Langevin dynamics. We set up the calculation by
writing the generating functional for the spin correlations
and responses, and find that this generating functional can be
written in terms of a functional integral over an auxiliary
field that depends on two times. We set up the renormaliza-
tion group procedure by defining a cutoff �0 for the time
differences. We increase the cutoff slightly and integrate over
all values of the auxiliary field that correspond to time dif-
ferences smaller than this slightly increased cutoff. This in-
tegral is actually a Gaussian integral that can be performed
exactly. After integrating over the fast variables, we rescale
all times in such a way that the cutoff goes back to its origi-
nal value �0. We find that the RG flow converges to a fixed
point, which defines the fixed-point generating functional.
Finally, we consider a smooth and monotonously increasing
but otherwise arbitrary reparametrization of the time variable
t→s�t�, which induces a transformation of the sources for
the generating functional. We compute the value of the fixed-
point generating functional for those transformed values of
the sources, and show that it is the same as for the original
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values of the sources. In other words, the reparametrization
of the time variable leaves the fixed-point generating func-
tional invariant.

The rest of the paper is organized as follows: in Sec. II we
introduce and briefly discuss the spin model, the Martin-
Siggia-Rose formalism for the Langevin spin dynamics and
the assumptions about the nature of the random couplings; in
Sec. III we obtain an explicit form for the disorder-averaged
Martin-Siggia-Rose generating functional, which contains
the above-mentioned auxiliary fields that play a central role
in the formulation of the renormalization group; in Sec. IV
we introduce our renormalization group procedure, associ-
ated with coarse graining the time differences, derive the
flow equations for the parameters of the action, and find the
fixed point to which the RG flows; in Sec. V we derive the
central result of this work, i.e., we show that the fixed-point
generating functional is invariant under reparametrizations of
the time variable in the sources; and in Sec. VI we discuss
the physical consequences expected from the presence of this
symmetry, which have already been observed in numerical
simulations of spin glasses and structural glasses, and can
also be tested for in confocal microscopy experiments in col-
loidal glasses. Finally, in Sec. VII we summarize our results.

II. MODEL

We consider a spin-glass Hamiltonian containing only
two-spin interactions,

H0 =
1

2�
r,r�

Jrr��r�r� + �
r

W��r� . �1�

Here the indices r and r� label the N possible positions in the
�discrete� lattice, �r are soft spin variables, Jrr� are the spin
coupling constants �satisfying Jrr�=Jr�r and Jrr�=0 for r=r��,
and the one-spin potential W��� is chosen to control the
magnitude of the spin variables. We assume that the potential
W��� is real, even, and analytic at �=0, i.e.,

W��� = �
p=0

�

wp�2p, �2�

with wp=wp
� ∀p. For example, for the potential W���= �

4 �1
−�2�2, the coefficients are w0= �

4 , w1=− �
2 , w2= �

4 , and wp
=0 ∀p�2.

The Langevin equation for the spin variables for a given
realization �r�t� of the noise reads

��r

�t
= −

�H

��r
+ �r�t� . �3�

We assume, as usual, that the noise is Gaussian distributed
and uncorrelated, with a variance that defines the tempera-
ture T of the heat reservoir,

��r�t1��r��t2�� = 2T�r,r���t1 − t2� , �4�

where the angle brackets �¯� indicate an average over the
noise distribution.

We compute the derivatives

�H0

��r
= �

r�

Jrr��r� + W���r� , �5�

where we have used that for all r, Jrr=0.
Then the Martin-Siggia-Rose generating functional,39 av-

eraged over the realizations of the noise, and incorporating
the sources, reads

�Z��,h�� =� D�D�̂D	̂ exp	L��,�̂� + �
r
�

t0

tf

dt��r�t��r�t�

+ ihr�t��̂r�t�� + i�
r

	̂r��r�t0� − 	r�
 , �6�

where the notation ��¯�� indicates the average over the re-
alizations of the noise. We are considering the time evolution
between times t0 and tf of the spins �r�t�, with initial condi-
tions given by the 	r, i.e., ∀r :�r�t0�=	r, and the action is
given �in general� by

L��,�̂� = − i�
r
�

t0

tf

dt�̂r�t�� ��r�t�
�t

+ ��H0

��r
�

��

− iT�̂r�t�� .

�7�

In our case, by using Eq. �5� we obtain

L��,�̂� = − i�
r
�

t0

tf

dt�̂r�t�


� ��r�t�
�t

+ �
r�

Jrr��r� + W���r� − iT�̂r�t�� .

�8�

We assume that the disorder is given by an uncorrelated,
zero-mean, Gaussian distribution for the couplings, i.e.,

PJ� = �
r�r�

� exp�− Jrr�
2 /4Krr��

�4�Krr��
1/2 � . �9�

Here the connectivity matrix 2Krr�=Jrr�
2 defines the variances

of the random couplings, with the notation �¯� denoting an
average over the disorder. The connectivity matrix Krr� en-
codes the properties of the model. For example, in the case
of the Edwards-Anderson model, Krr�=K�0 for r, r� nearest
neighbors and is zero otherwise.

The functional �Z�� ,h�� allows the direct computation of
measurable quantities: expectation values, correlations, and
responses. The expectation values and the p-point correlation
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functions of the field �r�t� are calculated by taking deriva-
tives of �Z�� ,h�� with respect to the source � coupled to �
�Ref. 39�:

��r�t�� = ���Z��,h��
��r�t�

�
�=0,h=0

, �10�

Cp�r1,t1;r2,t2; ¯ ;rp,tp� � ��r1
�t1��r2

�t2� ¯ �rp
�tp��

=
��p��Z��,h��

��r1
�t��r2

�t2� ¯ �rp
�tp�

. �11�

Here we have used the fact that the generating functional
�Z�� ,h�� reduces to unity for zero sources; i.e., it satisfies the
condition �Z��=0,h=0��=1.

The effect of �possibly time-dependent� external fields
H=H0−�rhr�t��r�t� can also be probed by computing re-
sponse functions,

R�r,t�r�,t�� �
���r�t��
�hr��t��

= � ��Z��,h��
��r�t��hr��t��

�
�=0,h=0

= i��r�t��̂r��t��� ,

�r,t�r�,t�� � �
t�

t

dt�R�r,t�r�,t�� . �12�

Here R�r , t �r� , t�� represents the response to an external field
only present at time t�, i.e., a “delta function in time,” and
the integrated response �r , t �r� , t�� corresponds to a “step
field,” i.e., an external field that is “turned on” at time t� and
“stays on” until the time t when the spin is measured. An
important property of response functions is that, by causality,
the response R�r , t �r� , t�� is zero for t�� t. Expectation val-
ues, correlations, and responses for one disorder realization
can also be computed by formulas that differ from Eqs. �11�
and �12� only in that all disorder averaging is removed.

III. DISORDER-AVERAGED GENERATING
FUNCTIONAL

Once the distribution of the couplings is defined, we can
average the disorder-dependent exponential in the action,

z0��̂,�� � exp�− i�
t0

tf

dt�
r,r�

Jrr��̂r�t��r��t��
= �

r�r�
� dJrr�

exp�− Jrr�
2 /4Krr��

�4�Krr��
1/2

exp�Jrr�	− i�
t0

tf

dt��̂r�t��r��t� + �̂r��t��r�t��
�
= exp	− �

r,r�

Krr�

2
�

t0

tf

dt1dt2��̂r�t1��r��t1��̂r�t2��r��t2� + �̂r��t1��r�t1��̂r�t2��r��t2�

+ �̂r�t1��r��t1��̂r��t2��r�t2� + �̂r��t1��r�t1��̂r��t2��r�t2��
 . �13�

We now define the notations �r
0�t�� �̂r�t�, �r

1�t���r�t�, 0̄�1, and 1̄�0, which allow us to write

z0��̂,�� = exp�−
1

2�
r,r�

Krr��
t0

tf

dt1dt2 �
a,c=0

1

�r
a�t1��r

c�t2��r�
ā �t1��r�

c̄ �t2�� . �14�

Here we can introduce auxiliary two-time fields Qr
ac�t1 , t2� by performing a Hubbard-Stratonovich transformation,

z0��̂,�� =� DQ exp�−
1

2�
r,r�

Mrr��
t0

tf

dt1dt2 �
a,c=0

1

Qr
ac�t1,t2�Qr�

āc̄�t1,t2� + i�
r
�

t0

tf

dt1dt2 �
a,c=0

1

Qr
ac�t1,t2��r

a�t1��r
c�t2�� , �15�

where Mrr� is the matrix inverse of Krr� and �DQ�N�M���r,a,c�t1,t2
dQr

ac�t1 , t2�. Here N�M�= det��2��−1M��1/2 is an
M-dependent normalization factor.

We are now in a position to write down the disorder-averaged generating functional for the problem,

Z��,h� � �Z��,h�� =� DQ exp�− SK�Q� − Snl�Q,�,h�� , �16�

where
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SK�Q� �
1

2�
r,r�

Mrr��
t0

tf

dt1dt2 �
a,c=0

1

Qr
ac�t1,t2�Qr�

āc̄�t1,t2� , �17�

Snl�Q,�,h� � − ln � D�0D�1D	̂ exp	iSHS�Q,�0,�1�

+ iSspin��0,�1� + iSBC��1,	̂�

+ �
r
�

t0

tf

dt��r�t��r�t� + ihr�t��̂r�t��
 , �18�

SHS�Q,�0,�1� = �
r
�

t0

tf

dt1dt2 �
a,c=0

1

Qr
ac�t1,t2��r

a�t1��r
c�t2� ,

�19�

Sspin��0,�1� = − �
r
�

t0

tf

dt�r
0�t�� ��r

1�t�
�t

+ W���r
1� − iT�r

0�t�� ,

�20�

SBC��1,	̂� = �
r

	̂r�r
1�t0� − 	r� . �21�

To simplify the algebra, we take from now on the integra-
tion limits as t0=0 and tf →�. By combining Eqs. �2� and
�20�, we write Sspin in a way that will allow the RG equations
to be put in a simple form,

Sspin��0,�1� = − �
r
�

0

�

dt	 1

�
�r

0�t�
��r

1�t�
�t

+ �
a,c=0

1

�ac
�2��r

a�t��r
c�t� + �

p=2

�

��2p��r
0�t�


��r
1�t��2p−1
 +

i

2
�

0

�

dt1dt2�
r,r�

Krr�


 �
a,c=0

1

g�4��t1 − t2��r
a�t1��r

c�t2��r�
ā �t1��r�

c̄ �t2� .

�22�

IV. RENORMALIZATION GROUP

We want to introduce an RG transformation on the time
variables. Since the construction of the RG transformation is
a bit unusual, we will explain it in detail. We introduce a
short-time cutoff �0=1 /�0 for the time difference t1− t2. This
only affects the terms in the action containing an integration
over two-time variables, namely, SK�Q�, SHS�Q ,�0 ,�1�, and
Sspin��0 ,�1�. The first two terms take the following form as a
starting point for the RG:

SK�Q� =
1

2�
r,r�

Mrr���0��t1−t2�
0�t1,t2��

dt1dt2 �
a,c=0

1

Qr
ac�t1,t2�Qr�

āc̄�t1,t2� ,

�23�

SHS�Q,�0,�1� = �
r
��0��t1−t2�

0�t1,t2��

dt1dt2 �
a,c=0

1

Qr
ac�t1,t2�


�r
a�t1��r

c�t2� . �24�

These terms differ from Eqs. �17� and �19� by the removal of
the contributions corresponding to �t1− t2���0. There are two
possible natural assumptions about how this cutoff is imple-
mented: either we assume �i� that the contributions for those
time pairs is directly removed from SK�Q� and
SHS�Q ,�0 ,�1� without any effects on other terms in the ac-
tion, or �ii� that the Hubbard-Stratonovich transformation
performed to obtain Eq. �15� is undone for time pairs �t1
− t2���0. These two alternative assumptions lead to slightly
different starting points for the RG flow, but in the end the
flow converges to exactly the same fixed point in both cases.
This is reassuring, in the sense that we expect the properties
of the long-time dynamics not to depend on the cutoff pro-
cedure. The initial coefficients for Sspin��0 ,�1� in Eq. �22�
are given by

� = 1,

�00
�2� = − iT ,

�01
�2� = �10

�2� = 2w1,

�11
�2� = 0,

��2p� = 2pwp ∀ p � 2, �25�

g�4��t1 − t2� = 	0 for cutoff procedure �i�
C�t1−t2���0

for cutoff procedure �ii� .

�26�

Here the characteristic function CP is defined to be 1 if P is
true and 0 if P is false.

We now perform an RG transformation on the time vari-
ables. We separate the two-time fields Q into fast modes Q�

and slow modes Q�,

Q�,r
ac �t1,t2� � 	Qr

ac�t1,t2� for �0 � �t1 − t2� � b�0

0 for b�0 � �t1 − t2� , 

�27�

Q�,r
ac �t1,t2� � 	0 for �0 � �t1 − t2� � b�0

Qr
ac�t1,t2� for b�0 � �t1 − t2� , 


�28�

with b�1. Clearly, we have

Qr
ac�t1,t2� = Q�,r

ac �t1,t2� + Q�,r
ac �t1,t2� , �29�

and by inspecting Eq. �23� we find that

SK�Q� = SK�Q� + Q�� = SK�Q�� + SK�Q�� . �30�

As our next step, we integrate over the fast variables Q� to
obtain
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S�/b�Q�� = − ln� DQ� exp− S��Q� + Q���

= F� +
1

2�
r,r�

Mrr��b�0��t1−t2�
0�t1,t2��

dt1dt2 �
a,c=0

1

Q�,r
ac �t1,t2�Q�,r�

āc̄ �t1,t2� − ln� D�0D�1D	̂	� DQ� exp�−
1

2�
r,r�

Mrr�


��0��t1−t2��b�0

0�t1,t2��

dt1dt2 �
a,c=0

1

Q�,r
ac �t1,t2�Q�,r�

āc̄ �t1,t2� + i�
r
��0��t1−t2��b�0

0�t1,t2��

dt1dt2 �
a,c=0

1

Q�r
ac �t1,t2��r

a�t1��r
c�t2��



 exp�i�
r
�b�0��t1−t2�

0�t1,t2��

dt1dt2 �
a,c=0

1

Q�,r
ac �t1,t2��r

a�t1��r
c�t2� + iSspin��0,�1� + iSBC��1,	̂�� . �31�

The factor �DQ� exp¯��, which contains the integra-
tion over the fast modes Q�, is actually a Gaussian integral,
which evaluates to

�det�2��−1K��V��0,b�/2 exp�−
1

2�
r,r�

Krr���0��t1−t2��b�0

0�t1,t2��

dt1dt2


 �
ac=0

1

�r
a�t1��r

c�t2��r�
ā �t1��r�

c̄ �t2�� , �32�

where V��0 ,b� is proportional to the volume of the two-
dimensional �time� region where the condition �0� �t1− t2�
�b�0 holds. In this expression, the determinant prefactor
contributes to the renormalization of the constant term F�,
and the argument of the exponential contributes to the renor-
malization of the function g�4��t1− t2�.

We now not only perform the rescaling of the fields
Q�,r

ac �t1 , t2� and the time variable, as it would normally be
done for an RG procedure, but we also simultaneously re-
scale the �r

a�t� fields and the sources �r�t� ,hr�t��, even
though those quantities were not subject to the integration of
fast modes,

Q�,r
ac �bt1�,bt2�� = b�ac

�2�
Qr�

ac�t1�,t2�� , �33�

bt� = t , �34�

�r
a�bt�� = b�a

�1�
�r�

a�t�� , �35�

�r�bt�� = b���r��t�� , �36�

hr�bt�� = b�hhr��t�� . �37�

We then get

SK� �Q�� = �b2+�ac
�2�+�āc̄

�2�
�
1

2�
r,r�

Mrr���0��t1�−t2��

0�t1�,t2���

dt1�dt2�


 �
a,c=0

1

Qr�
ac�t1�,t2��Qr�

�āc̄�t1�,t2�� , �38�

SHS� �Q�,��0,��1� = �b2+�ac
�2�+�a

�1�+�c
�1�

��
r
��0��t1�−t2��

0�t1�,t2���

dt1�dt2�


 �
a,c=0

1

Qr�
ac�t1�,t2���r�

a�t1���r�
c�t2�� . �39�

Since the terms SK and SHS together represent the four-
spin interaction that makes the model glassy, we demand that
they both should be marginal under the RG. This leads to the
conditions

0 = 2 + �ac
�2� + �āc̄

�2�, �40�

0 = 2 + �ac
�2� + �a

�1� + �c
�1�. �41�

The second condition can only be satisfied if �ac
�2� is of the

form �ac
�2�= f�a�+ f�c�, where f�a��−1−�a

�1�. Inserting this
form into the first condition, it yields 1+ f�a�+ f�ā�=0. At
this point we still have freedom to pick among infinitely
many possible solutions to this equation, each one of them
defining a different RG transformation. We decide to choose
the assignment f�a��−a, which leads to

�ac
�2� � − a − c , �42�

�a
�1� � a − 1 = − ā . �43�

The choice of this particular solution is natural if we con-
sider a reparametrization group �RpG� transformation,38 as-
sociated with a reparametrization s�t� of the time variables,

Q̃r
ac�t1�,t2�� = � �s

�t1�
�a� �s

�t2�
�c

Qr
ac�s�t1��,s�t2��� , �44�

where a ,c� 0,1�. For the special case of a rescaling of
times, s�t��=bt�, Eq. �44� reduces to

Qr
ac�bt1�,bt2�� = b−a−cQ̃r

ac�t1�,t2�� , �45�

which is completely analogous to Eq. �33� in the case �ac
�2�

=−a−c.
For the source term, we demand that it should be marginal

under the RG, and obtain the rescaling exponents
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�� = − 1 − �1
�1� = − 1, �46�

�h = − 1 − �0
�1� = 0. �47�

It can be checked that, besides SK, SHS and the source term,
the boundary condition term SBC is also marginal under the
RG.

We now consider the effect of the RG transformation on
the terms contained in Sspin��0 ,�1�. The time derivative term
is not affected by the integration over fast modes, and the
rescaling of times and fields introduces the following rescal-
ing:

1

�
→

1

��
=

b1−0̄−1̄

b�
=

1

b�
. �48�

If we now write

b = e�l, �49�

we get the RG equation

d�

dl
= � . �50�

Similarly we obtain

d�ac
�2�

dl
= �a + c − 1��ac

�2�, �51�

d��2p�

dl
= 0. �52�

Finally, from Eq. �32�, we find that the only term to re-
ceive a contribution from the integration over the fast de-
grees of freedom is the g�4��t1− t2� term,

g�4��t1 − t2� → g��4��t1� − t2�� = b2−ā−c̄−a−c�g�4��bt1� − bt2��

+ C�0��bt1�−bt2���b�0
� , �53�

and we observe that for this term the rescaling prefactor
evaluates to unity: b2−ā−c̄−a−c=1.

By examining the RG flow of Eqs. �50�–�53�, we find the
following fixed-point values:

�� = 0,� ,

�00
��2� = 0,� ,

�01
��2� = any number,

�10
��2� = any number,

�11
��2� = 0,� ,

���2p� = any number ∀ p � 2,

g��4��t1 − t2� = C�t1−t2���0
. �54�

Since the RG flows of all parameters are uncoupled, the so-
lutions above can be chosen independently for each param-

eter. The stability analysis around the fixed points shows that
perturbations of �, �00

�2�, and �11
�2� are relevant near ��=0,

�00
��2�=�, and �11

��2�=0, respectively, and are irrelevant near
��=�, �00

��2�=0, and �11
��2�=�, respectively. It also shows that

perturbations of �01
�2�, �10

�2�, and ��2p� are marginal around any
of their fixed points. Perturbations of g�4��t1− t2� are always
irrelevant. Therefore, for the set of initial conditions given by
Eq. �26�, and for almost any other set of initial conditions,
the RG flows for �, �00

�2�, and g�4��t1− t2� converge to their
stable fixed points. However, the parameter �11

�2� has a starting
value, which is exactly at the unstable fixed point �11

��2�=0,
and stays there through the RG flow. Additionally, the pa-
rameters �01

�2�, �10
�2�, and ��2p� do not flow at all, and stay at

their initial values. In summary, the parameters of
Sspin��0 ,�1� flow to the fixed-point values,

�� = � ,

�00
��2� = 0,

�01
��2� = 2w1,

�10
��2� = 2w1,

�11
��2� = 0,

���2p� = 2pwp ∀ p � 2,

g��4��t1 − t2� = C�t1−t2���0
. �55�

As anticipated above, this result is the same for cutoff pro-
cedures �i� and �ii� �and in fact for any other possible initial
value of g�4��t1− t2��.

The fact that � flows to infinity indicates that the deriva-
tive term does not appear in the fixed-point action. However,
the states of the system at different times are still coupled by
three other terms: SK�Q�, SHS�Q ,�0 ,�1�, and the term pro-
portional to g�4��t1− t2� in Sspin��0 ,�1�. We interpret this to
indicate that, while the time derivative terms may be impor-
tant for the short-time dynamics, when the short-time dy-
namics is integrated over and only the long-time dynamics
remains, the coupling between different times is provided
only by the terms associated to the spin-glass interactions.
This is reminiscent of earlier mean-field calculations of the
aging dynamics of spin glasses, in which the time derivative
terms are negligible at long times, and the coupling between
different times is also provided only by the spin-glass inter-
action terms.4,5 In that context, the time derivative terms
break the mean-field version of time reparametrization in-
variance, and therefore, this invariance is only valid for very
long times when time derivative terms are negligible.3–5,38

By combining all the results for the RG flow for the vari-
ous terms in the action, we find that the action converges to
the fixed point,
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Sfp�Q� = F� +
1

2�
r,r�

Mrr���0��t1−t2�
0�t1,t2��

dt1dt2 �
a,c=0

1

Qr
ac�t1,t2�Qr�

āc̄�t1,t2�

− ln� D�0D�1D	̂ exp	i�
r
��0��t1−t2�

0�t1,t2��

dt1dt2 �
a,c=0

1

Qr
ac�t1,t2��r

a�t1��r
c�t2� − i�

r
�

0

�

dt�− 2w1�r
0�t��r

1�t�

− �
p=2

�

2pwp�r
0�t���r

1�t��2p−1� −
1

2�
r,r�

Krr���t1−t2���0

0�t1,t2��

dt1dt2 �
a,c=0

1

�r
a�t1��r

c�t2��r�
ā �t1��r�

c̄ �t2� + i�
r

	̂r�r
1�0� − 	r�

+ �
r
�

0

�

dt��r�t��r
1�t� + ihr�t��r

0�t��
 . �56�

In this form the fixed-point action no longer contains the auxiliary fields Qr
ac�t1 , t2� for times t1 and t2 such that �t1− t2�

��0. We now reintroduce those auxiliary fields through the same Hubbard-Stratonovich transformation that was used to obtain
Eq. �14�, and obtain

Sfp�Q� = F� +
1

2�
r,r�

Mrr�� �
0

�

dt1dt2 �
a,c=0

1

Qr
ac�t1,t2�Qr�

āc̄�t1,t2�

− ln� D�0D�1D	̂ exp	i�
r
� �

0

�

dt1dt2 �
a,c=0

1

Qr
ac�t1,t2��r

a�t1��r
c�t2�

− i�
r
�

0

�

dt�− 2w1�r
0�t��r

1�t� − �
p=2

�

2pwp�r
0�t���r

1�t��2p−1� + i�
r

	̂r�r
1�0� − 	r� + �

r
�

0

�

dt��r�t��r
1�t� + ihr�t��r

0�t��
 .

�57�

V. REPARAMETRIZATION SYMMETRY

We are now finally ready to evaluate the effect of a rep-
arametrization t→s�t� of the time variable on the fixed-point
generating functional Zfp�� ,h�. We consider any smooth mo-
notonous increasing function s�t� satisfying the boundary
conditions s�0�=0 and s���=�, which induces the following
transformation of the sources:

�̃r�t� = � �s

�t
��r�s�t�� , �58�

h̃r�t� = hr�s�t�� , �59�

and compute the fixed-point disorder-averaged generating
functional, evaluated at the transformed sources,

Zfp��̃r�t�, h̃r�t��� =� DQ̃ exp�− F� −
1

2�
r,r�

Mrr�� �
0

�

dt1dt2 �
a,c=0

1

Q̃r
ac�t1,t2�Q̃r�

āc̄�t1,t2�

+ ln� D�0D�1D	̂ exp	i�
r
� �

0

�

dt1dt2 �
a,c=0

1

Q̃r
ac�t1,t2��r

a�t1��r
c�t2� − i�

r
�

0

�

dt�− 2w1�r
0�t��r

1�t�

− �
p=2

�

2pwp�r
0�t���r

1�t��2p−1� + i�
r

	̂r�r
1�0� − 	r� + �

r
�

0

�

dt��̃r�t��r
1�t� + ih̃r�t��r

0�t��
� . �60�

Here we have changed the name of the dummy variables from � to � and from Q to Q̃ in the functional integral. We now

perform the changes in variables �r
a�t�= � �s

�t �
ā�r

a�s�t�� and Q̃r
ac�t1 , t2�= � �s

�t1
�a� �s

�t2
�cQr

ac�s�t1� ,s�t2��, i.e., the change in variables
associated with the RpG transformation of Eq. �44�, thus obtaining
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Zfp��̃r�t�, h̃r�t��� =� DQ exp�− F� −
1

2�
r,r�

Mrr�� �
0

�

dt1dt2 �
a,c=0

1 � �s

�t1
�a+ā� �s

�t2
�c+c̄

Qr
ac�s�t1�,s�t2��Qr�

āc̄�s�t1�,s�t2��

+ ln� D�0D�1D	̂ exp	i�
r
� �

0

�

dt1dt2 �
a,c=0

1 � �s

�t1
�a+ā� �s

�t2
�c+c̄

Qr
ac�s�t1�,s�t2���r

a�s�t1���r
c�s�t2��

− i�
r
�

0

�

dt�− 2w1� �s

�t
��r

0�s�t���r
1�s�t�� − �

p=2

�

2pwp� �s

�t
��r

0�s�t����r
1�s�t���2p−1� + i�

r

	̂r�r
1�s�0�� − 	r�

+ �
r
�

0

�

dt	� �s

�t
��r�s�t���r

1�s�t�� + ihr�s�t��� �s

�t
��r

0�s�t��
 + ln J1�D��0�1�
D��0�1�

�
 + ln J2�DQ̃

DQ
�� .

�61�

Here the symbol J1� D��0�1�
D��0�1� � represents the Jacobian of the transformation from � to �, and the symbol J2� DQ̃

DQ � represents the

Jacobian of the transformation from Q to Q̃. Since both transformations are linear transformations, the Jacobians only depend
on the reparametrization s�t�, but they do not depend on the fields � or Q, or the sources �r�t� ,hr�t��. For this reason, we will
denote them as J1s�t�� and J2s�t��, respectively. Using the fact that a+ ā=1 and c+ c̄=1, we find that the factor
� �s

�t1
�a+ā� �s

�t2
�c+c̄ is simply the Jacobian of the transformation from �t1 , t2� to �t1� , t2��= �s�t1� ,s�t2��, and therefore, we obtain

Zfp��̃r�t�, h̃r�t��� =� DQ exp�− F� −
1

2�
r,r�

Mrr�� �
0

�

dt1�dt2� �
a,c=0

1

Qr
ac�t1�,t2��Qr�

āc̄�t1�,t2�� + ln� D�0D�1D	̂


exp	i�
r
� �

0

�

dt1�dt2� �
a,c=0

1

Qr
ac�t1�,t2���r

a�t1���r
c�t2�� − i�

r
�

0

�

dt��− 2w1�r
0�t���r

1�t�� − �
p=2

�

2pwp�r
0�t��


��r
1�t���2p−1� + i�

r

	̂r�r
1�0� − 	r� + �

r
�

0

�

dt���r�t���r
1�t�� + ihr�t���r

0�t��� + ln J1s�t��
 + ln J2s�t���
= Zfp��r�t�,hr�t��� 
 J1s�t�� 
 J2s�t�� . �62�

Here we have used the boundary condition s�0�=0. We now
consider the special case of zero sources, i.e., �r�t�=0 and
hr�t�=0; in this case, the transformed sources are identical to
the original ones, and we have the condition

Zfp�0,0�� = Zfp�0,0�� 
 J1s�t�� 
 J2s�t�� . �63�

Since the generating functional is nonzero for zero sources
�it is actually unity39�, we immediately conclude that for any
reparametrization s�t�, the product of the Jacobians is unity:
J1s�t��
J2s�t���1. Thus we obtain, for any reparametri-
zation s�t�, the identity

Zfp��̃r�t�, h̃r�t��� = Zfp��r�t�,hr�t��� , �64�

i.e., we have shown that the fixed-point generating functional
is invariant under time reparametrization transformations.

VI. PHYSICAL CONSEQUENCES OF THE TIME
REPARAMETRIZATION SYMMETRY

Since the renormalization group procedure described
above involves integrating over all short-time-scale fluctua-

tions, the fixed-point generating functional that we obtained
controls the long-time dynamics of the model. The group of
transformations associated with time reparametrizations is a
continuous symmetry group for the fixed-point generating
functional. This symmetry is broken by the actual dynamical
correlations and responses observed in the system. As an
example, let us consider the space-averaged two-time corre-
lation C�t , tw�� 1

N�r��r�t��r�tw��, where tw is normally re-
ferred to as the “waiting time” and t as the “final time.” If
this correlation was actually invariant under time reparam-
etrizations, we would have C�t , tw�=C�s�t� ,s�tw�� for any ar-
bitrary increasing function s�t� such that s�0�=0 and s���
=�. The only possible way that this condition can be satis-
fied is if C�t , tw�=C0 �a constant�. Since correlations in spin
glasses actually do change with time, this implies that the
reparametrization symmetry must be broken.

We have, therefore, the presence of a broken continuous
symmetry group. Since no long-range interactions or gauge
potentials are present, we should normally expect that a
Goldstone theorem applies, giving rise to the presence of
Goldstone modes �or soft modes� in the system.40 For this
reason, it has already been argued in Refs. 34–37 that Gold-
stone modes should be present in the nonequilibrium dynam-
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ics of spin glasses and possibly other glassy systems, and
could in principle constitute the main source of fluctuations
in the nonequilibrium dynamics of these systems. In other
words, the presence of time reparametrization symmetry
could account for a significant part of the dynamical hetero-
geneity effects observed in glassy systems.

In general, Goldstone modes are obtained from a continu-
ous symmetry transformation by making it smoothly space
dependent. For example, if the symmetry corresponds to
spin rotations by any angle, to obtain a Goldstone mode the
angle is chosen to be smoothly space dependent. In the
present case, the continuous symmetry corresponds to rep-
arametrizing the time variable t→s�t�. In the uniform case,

this leads to the symmetry transformation C�t , tw�→ C̃�t , tw�
=C�s�t� ,s�tw��. The Goldstone modes are obtained by choos-
ing the time reparametrization to be smoothly space depen-
dent, i.e., t→sr�t� and Cr�t , tw�=C0�sr�t� ,sr�tw��, where
C0�t , tw� is space independent.35–37 Since the reparametriza-
tion is nonuniform, it is no longer a symmetry transformation
for the system, but if the space variation is slow enough, the
change in the action with respect to the value for a uniform
two-time field is small. A possible �very simplified� physical
interpretation of these Goldstone modes is that they are as-
sociated with “nonuniform slow relaxation:” if one considers
different small regions in the system, for all regions the re-
laxation path is very nearly the same �as given by C0�t , tw��,
but the rate at which each small region advances in its relax-
ation path can fluctuate from region to region.

Testing for the presence of fluctuations associated with
this reparametrization symmetry has been performed in nu-
merical simulations of both spin glasses and structural
glasses. In spin glasses, one prediction that can be tested in
simulations refers to the values of coarse grained local cor-
relations Cr�t , tw�� 1

n�i�Br
si�t�si�tw� and integrated responses

r�t , tw���tw
t dt�

1
n�i�Br

���i�t��
�hi�t��

, where Br is a cubic coarse
graining box containing n spins centered at the point r, in
comparison to the global values C�t , tw� and �t , tw� obtained
by taking the averages over the whole sample. As explained
in Refs. 35 and 36, the presence of Goldstone modes associ-
ated with time reparametrization symmetry would imply that
the pairs �Cr ,r� should be concentrated predominantly
along the parametric curve �C�. It turns out that this is
exactly what is observed in the results of numerical simula-
tions in the three-dimensional �3D� Edwards-Anderson
model.35,36 Another testable prediction is that, if the global
correlation C�t , tw� is only a function of the ratio t / tw, i.e.,
C�t , tw�=C�t / tw�, the probability distribution ��Cr�t , tw�� for
the values of the local coarse grained correlation Cr�t , tw�
should collapse as a function of tw, as long as t / tw is held
fixed. This has also been found to be the case in simulations
in the 3D Edwards-Anderson model.35,36 In Ref. 37 a more
detailed study of the shape of the probability distributions for
both the Edwards-Anderson model and a kinetically con-
strained model of glassiness was performed, with results that
were consistent with the predictions derived from the pres-
ence of Goldstone modes in the system.

Another aspect of the results presented here that can be
tested by comparison with numerical simulations in spin
glasses is the fact that the symmetry is only exact for the

fixed-point generating functional, i.e., in the limit t→�. For
the case of an exact continuous symmetry, one should expect
that the presence of a true Goldstone mode �with zero mass�
gives rise to spatial correlations that decay as power laws at
long distances. However, at any finite time the symmetry is
broken by small corrections to the action, which we can
think of as small symmetry-breaking fields that go to zero at
t→�. As a consequence of the presence of these symmetry-
breaking fields, the Goldstone modes now acquire a small
mass, which should vanish in the t→� limit. In Ref. 36, the
spatial correlation length ��t , tw� for fluctuations of the quan-
tity Qr

11�t , tw� was measured in large-scale long-time simula-
tions in a 3D Edwards-Anderson model. For very large t, tw,
and t / tw the time dependence of ��t , tw� was found to be
consistent both with a form ��t , tw�� ln�ttw� or a form
��t , tw���ttw�a, with a�0.04. Both forms extrapolate �albeit
slowly� to infinity at infinite times. This is suggestive and
consistent with what is expected from the results of the
present work, but the actual values of ��t , tw� are too small to
make any firm statements about the t→� limit.

The present work only proves the presence of time rep-
arametrization invariance in spin glasses. However, it is con-
ceivable that the symmetry could extend to structural glasses,
and there has already been some work in structural glasses,
which has found suggestive evidence for its presence. In the
case of structural glasses, there is another quantity which
plays the role of local coarse grained correlation. It is
defined22 as Cr�t , tw�= 1

N�Br�
�rj�tw��Br

cosq · �r j�t�−r j�tw���.
Here Br denotes a coarse graining box centered at the point r
in the system, and the sums run over all of the N�Br� par-
ticles present in Br at the waiting time tw. The value of q is
usually chosen to correspond to the main peak in the struc-
ture factor S�q� of the system. Unlike in the 3D Edwards-
Anderson model, in structural glasses the global correlation
C�t , tw� is not a function of the ratio t / tw. For this situation,
the presence of the Goldstone mode associated with time
reparametrization invariance implicates that the probability
distribution ��Cr�t , tw�� for the values of the local coarse
grained correlation Cr�t , tw� should collapse as a function of
tw, as long as the global correlation C�t , tw� is held fixed.36,37

This has been found to be the case, to a good approximation,
in simulations in binary Lennard-Jones mixtures and binary
Weeks-Chandler-Anderson mixtures.22

Confocal microscopy experiments in colloidal glasses9–11

provide detailed data that include the positions of all colloi-
dal particles in some subvolume of the sample at different
times in the evolution of the system. These data can be ana-
lyzed in completely analogous ways to those used to analyze
data from simulations in structural glasses. It remains an
open question whether or not such analysis would provide
further evidence in favor of the presence of time reparam-
etrization symmetry.

VII. SUMMARY

In this work, we have presented a detailed proof of the
presence of a symmetry under continuous reparametrizations
of the time variable, for the long-time dynamics of a generic
spin-glass model with two-spin interactions. No assumptions

TIME REPARAMETRIZATION SYMMETRY IN SPIN-GLASS… PHYSICAL REVIEW B 78, 214430 �2008�

214430-9



were made about the range of the interactions, therefore, the
proof applies equally to short-range models, such as the
Edwards-Anderson model, and to long-range models, such as
the Sherrington-Kirkpatrick model. By performing a renor-
malization group procedure that exactly integrates over de-
grees of freedom associated with short-time differences, we
have obtained the RG flow for the parameters in the action.
We have found that the RG flow converges to a fixed-point
generating functional, and we have explicitly written the
form of this generating functional. Our main result is to have
shown that the value of the fixed-point generating functional
is left invariant by a transformation of the sources induced
by a monotonous increasing but otherwise arbitrary reparam-
etrization of the time variable.

The group of transformations associated with time rep-
arametrizations is a continuous symmetry group for the
fixed-point generating functional. This symmetry is broken
by the actual dynamical correlations and responses observed
in the system. In a situation like this, one would normally
expect the presence of Goldstone modes. Indeed, it has been
argued34–37 that Goldstone modes associated with time rep-
arametrization invariance should dominate the fluctuations in
the nonequilibrium dynamics of these systems. Positive evi-
dence for this statement has been found in simulations of the
aging dynamics of the 3D Edwards-Anderson model.35–37

Even simulations in systems without quenched disorder, such
as kinetically constrained models of glassiness37 and models
of structural glasses,22 show evidence in favor of the pres-
ence of this symmetry. Additionally, experimental tests for
the presence of this symmetry in colloidal glasses can be
provided by confocal microscopy measurements. Having
proved the presence of time reparametrization symmetry, the
present work opens the door for a more detailed analytical
study of the symmetry itself, of the Goldstone modes prob-
ably associated with its presence, and more generally of the
fluctuations �“dynamical heterogeneities”� that are present in
the slow dynamics of spin glasses and other glassy systems.
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